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(57) ABSTRACT

A coherent attached processor proxy (CAPP) includes trans-
port logic having a first interface configured to support com-
munication with a system fabric of a primary coherent system
and a second interface configured to support communication
with an attached processor (AP) that is external to the primary
coherent system and that includes a cache memory that holds
copies of memory blocks belonging to a coherent address
space of the primary coherent system. The CAPP further
includes one or more master machines that initiate memory
access requests on the system fabric of the primary coherent
system on behalf of the AP, one or more snoop machines that
service requests snooped on the system fabric, and a CAPP
directory having a precise directory having a plurality of
entries each associated with a smaller data granule and a
coarse directory having a plurality of entries each associated
with a larger data granule.
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1
COHERENT ATTACHED PROCESSOR
PROXY HAVING HYBRID DIRECTORY

PRIORITY CLAIM

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/921,844, entitled “COHERENT
ATTACHED PROCESSOR PROXY HAVING HYBRID
DIRECTORY,” filed on Jun. 19, 2013, the disclosure of which
is incorporated herein by reference in its entirety for all pur-
poses.

BACKGROUND OF THE INVENTION

The present invention relates to data processing, and more
specifically, to a coherent proxy for an attached processor.

A conventional distributed shared memory computer sys-
tem, such as a server computer system, includes multiple
processing units all coupled to a system interconnect, which
typically comprises one or more address, data and control
buses. Coupled to the system interconnect is a system
memory, which represents the lowest level of volatile
memory in the multiprocessor computer system and gener-
ally is accessible for read and write access by all processing
units. In order to reduce access latency to instructions and
data residing in the system memory, each processing unit is
typically further supported by a respective multi-level cache
hierarchy, the lower level(s) of which may be shared by one or
more processor cores.

Because multiple processor cores may request write access
to a same memory block (e.g., cache line or sector) and
because cached memory blocks that are modified are not
immediately synchronized with system memory, the cache
hierarchies of multiprocessor computer systems typically
implement a cache coherency protocol to ensure at least a
minimum required level of coherence among the various
processor core’s “views” of the contents of system memory.
The minimum required level of coherence is determined by
the selected memory consistency model, which defines rules
for the apparent ordering and visibility of updates to the
distributed shared memory. In all memory consistency mod-
els in the continuum between weak consistency models and
strong consistency models, cache coherency requires, at a
minimum, that after a processing unit accesses a copy of a
memory block and subsequently accesses an updated copy of
the memory block, the processing unit cannot again access
the old (“stale”) copy of the memory block.

A cache coherency protocol typically defines a set of cache
states stored in association with cached copies of memory
blocks, as well as the events triggering transitions between the
cache states and the cache states to which transitions are
made. Coherency protocols can generally be classified as
directory-based or snoop-based protocols. In directory-based
protocols, a common central directory maintains coherence
by controlling accesses to memory blocks by the caches and
by updating or invalidating copies of the memory blocks held
in the various caches. Snoop-based protocols, on the other
hand, implement a distributed design paradigm in which each
cache maintains a private directory of its contents, monitors
(“snoops™) the system interconnect for memory access
requests targeting memory blocks held in the cache, and
responds to the memory access requests by updating its pri-
vate directory, and if required, by transmitting coherency
message(s) and/or its copy of the memory block.

The cache states of the coherency protocol can include, for
example, those of the well-known MESI (Modified, Exclu-
sive, Shared, Invalid) protocol or a variant thereof. The MESI
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protocol allows a cache line of data to be tagged with one of
four states: “M” (Modified), “E” (Exclusive), “S” (Shared),
or “I” (Invalid). The Modified state indicates that a memory
block is valid only in the cache holding the Modified memory
block and that the memory block is not consistent with system
memory. The Exclusive state indicates that the associated
memory block is consistent with system memory and that the
associated cache is the only cache in the data processing
system that holds the associated memory block. The Shared
state indicates that the associated memory block is resident in
the associated cache and possibly one or more other caches
and that all of the copies of the memory block are consistent
with system memory. Finally, the Invalid state indicates that
the data and address tag associated with a coherency granule
are both invalid.

BRIEF SUMMARY

In at least one embodiment, a coherent attached processor
proxy (CAPP) includes transport logic having a first interface
configured to support communication with a system fabric of
a primary coherent system and a second interface configured
to support communication with an attached processor (AP)
that is external to the primary coherent system and that
includes a cache memory that holds copies of memory blocks
belonging to a coherent address space of the primary coherent
system. The CAPP further includes one or more master
machines that initiate memory access requests on the system
fabric of the primary coherent system on behalf of the AP, one
or more snoop machines that service requests snooped on the
system fabric, and a CAPP directory having a precise direc-
tory having a plurality of entries each associated with a
smaller data granule and a coarse directory having a plurality
of entries each associated with a larger data granule.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a high level block diagram of an exemplary data
processing system in which a coherent device participates
with a primary coherent system across a communication link
through a proxy;

FIG. 2 is a more detailed block diagram of an exemplary
embodiment of the data processing system of FIG. 1;

FIG. 3 is a more detailed block diagram of an exemplary
embodiment of a processing unit in the data processing sys-
tem of FIG. 2;

FIG. 4 is a time-space diagram of an exemplary operation
on the system fabric of the data processing system of FIG. 2;

FIG. 5 is a more detailed block diagram of an exemplary
embodiment of the coherent attached processor proxy
(CAPP) in the processing unit of FIG. 3;

FIG. 6 is a high level logical flowchart of an exemplary
process by which a CAPP coherently handles a memory
access request received from an attached processor (AP) in
accordance with one embodiment;

FIG. 7 is a high level logical flowchart of an exemplary
process by which a CAPP coherently handles a snooped
memory access request in accordance with one embodiment;

FIG. 8 is a first time-space diagram of an exemplary pro-
cessing scenario in which an AP requests to coherently update
amemory block within the primary coherent system to which
it is attached;

FIG. 9 is a second time-space diagram of an exemplary
processing scenario in which an AP requests to coherently
update amemory block within the primary coherent system to
which it is attached;
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FIG. 10 is a third time-space diagram of an exemplary
processing scenario in which an AP requests to coherently
update amemory block within the primary coherent system to
which it is attached;

FIG. 11 is a more detailed view of a hybrid CAPP directory
in accordance with one embodiment;

FIG. 12 is a more detailed flowchart of an exemplary
method of determining the CAPP coherence state in an
embodiment having a hybrid CAPP directory;

FIG. 13 is a high level logical flowchart of an exemplary
method by which a CAPP implements cache management
commands of the AP in an embodiment having a hybrid
CAPP directory;

FIG. 14 is a high level logical flowchart of an exemplary
method by which a CAPP determines an partial response
(Presp) for a snooped request in an embodiment having a
hybrid CAPP directory;

FIG. 15 is a high level logical flowchart of an exemplary
method by which an AP manages a hybrid CAPP directory;
and

FIG. 16 is a data flow diagram of an exemplary design
process.

DETAILED DESCRIPTION

With reference now to the figures and with particular ref-
erence to FIG. 1, there is illustrated a high level block diagram
of'an exemplary data processing system 100 in which a coher-
ent device participates with a primary coherent system across
a communication link through a proxy. As shown, data pro-
cessing system 100 includes a primary coherent system 102
in which coherency of a distributed shared memory is main-
tained by implementation of a coherency protocol, such as the
well-known MESI protocol or a variant thereof. The coher-
ency protocol, which in various embodiments can be direc-
tory-based or snoop-based, is characterized by a bounded
time frame in which a system-wide coherency response is
determined for each memory access request.

As shown, the functionality of data processing system 100
can be expanded by coupling an attached processor (AP) 104
to primary coherent system 102 by acommunication link 108.
AP 104 may be implemented, for example, as a field program-
mable gate array (FPGA), application specific integrated cir-
cuit (ASIC), or other general or special-purpose processor or
system. In various embodiments, AP 104 may, for example,
serve as a co-processor that off-loads predetermined process-
ing tasks from primary coherent system 102, provide low cost
expansion of the general-purpose processing capabilities of
data processing system 100, and/or provide an interface with
a heterogeneous system external to primary coherent system
102. In some embodiments, AP 104 may serve as a memory
controller for system memory, an /O device, a bus perfor-
mance monitor, a bus irritator (e.g., used for floor debug and
system stress analysis). In support of these and other possible
functions of AP 104, AP 104 preferably includes a cache 106
that holds local copies of memory blocks in the coherent
memory address space of primary coherent system 102 to
enable low latency access to those memory blocks by AP 104.

In many cases, the technology utilized to implement AP
104, cache 106, and/or communication link 108 has insuffi-
cient speed, bandwidth and/or reliability to guarantee that AP
104 can participate in the determination of the system-wide
coherency responses for memory access requests within the
bounded time frame required by the coherency protocol of
primary coherent system 102. Accordingly, primary coherent
system 102 further includes at least one coherent attached
processor proxy (CAPP) 110 that participates on behalf of an
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associated AP 104 in the determination of the system-wide
coherency responses for AP 104 within a timeframe that
satisfies the timing requirements of the coherency protocol of
primary coherent system 102. Although not required, it is
preferable if CAPP 110 is programmable and can therefore be
programmed to support any of multiple different implemen-
tations of AP 104.

Referring now to FIG. 2, there is depicted a more detailed
block diagram of a data processing system 200 that is one of
the numerous possible embodiments of data processing sys-
tem 100 of FIG. 1. Data processing system 200 may be
implemented, for example, with one of the IBM Power serv-
ers, a product line of International Business Machines Cor-
poration of Armonk, N.Y.

Inthe depicted embodiment, data processing system 200 is
a distributed shared memory multiprocessor (MP) data pro-
cessing system including a plurality of processing units 202a-
202m. Each of processing units 202a-202m is supported by a
respective one of shared system memories 204a-204m, the
contents of which may generally be accessed by any of pro-
cessing units 202a-202m. Processing units 202a-202m are
further coupled for communication to a system fabric 206,
which may include one or more bused, switched and/or wire-
less communication links. The communication on system
fabric 206 includes memory access requests by processing
units 202 requesting coherent access to various memory
blocks within various shared system memories 204a-204m.

As further shown in FIG. 2, one or more of processing units
2044a-204m are further coupled to one or more communica-
tion links 210 providing expanded connectivity. For example,
processing units 202a and 202m are respectively coupled to
communication links 210a-210% and 210p-210v, which may
be implemented, for example, with Peripheral Component
Interconnect express (PCle) local buses. As shown, commu-
nication links 210 can be utilized to support the direct or
indirect coupling of input/output adapters (IOAs) such as
10As 212a, 212p and 212v, which can be, for example, net-
work adapters, storage device controllers, display adapters,
peripheral adapters, etc. For example, IOA 212p, which is
network adapter coupled to an external data network 214, is
coupled to communication link 210p optionally through an
1/O fabric 216p, which may comprise one or more switches
and/or bridges. In a similar manner, IOA 212v, which is a
storage device controller that controls storage device 218, is
coupled to communication link 210v optionally through an
I/O fabric 216v. As discussed with reference to FIG. 1, com-
munication links 210 can also be utilized to support the
attachment of one or more APs 104, either directly to a pro-
cessing unit 202, as is the case for AP 1044, which is coupled
to processing unit 202a by communication link 210k, or
indirectly to a processing unit 202 through an intermediate
I/O fabric 216, as can be the case for AP 104w, which can be
coupled to processing unit 202m through communication link
210v and optional 1/O fabric 216v.

Data processing system 200 further includes a service pro-
cessor 220 that manages the boot process of data processing
system 200 and thereafter monitors and reports on the perfor-
mance of and error conditions detected in data processing
system 200. Service processor 220 is coupled to system fabric
206 and is supported by a local memory 222, which may
include volatile (e.g., dynamic random access memory
(DRAM)) and non-volatile memory (e.g., non-volatile ran-
dom access memory (NVRAM) or static random access
memory (SRAM)). Service processor 220 is further coupled
to a mailbox interface 224 through which service processor
220 communicates 1/O operations with communication link
210a.

Those of ordinary skill in the art will appreciate that the
architecture and components of a data processing system can
vary between embodiments. For example, other devices and
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interconnects may alternatively or additionally be used.
Accordingly, the exemplary data processing system 200
given in FIG. 2 is not meant to imply architectural limitations
with respect to the claimed invention.

With reference now to FIG. 3, there is illustrated a more
detailed block diagram of an exemplary embodiment of a
processing unit 202 in data processing system 200 of FIG. 2.
In the depicted embodiment, each processing unit 202 is
preferably realized as a single integrated circuit chip having a
substrate in which semiconductor circuitry is fabricated as is
known in the art.

Each processing unit 202 includes multiple processor cores
3024-3027 for independently processing instructions and
data. Each processor core 302 includes at least an instruction
sequencing unit (ISU) 304 for fetching and ordering instruc-
tions for execution and one or more execution units 306 for
executing instructions. The instructions executed by execu-
tion units 306 may include, for example, fixed and floating
point arithmetic instructions, logical instructions, and
instructions that request read and write access to a memory
block in the coherent address space of data processing system
200.

The operation of each processor core 302a-302# is sup-
ported by a multi-level volatile memory hierarchy having at
its lowest level one or more shared system memories 204
(only one of which is shown in FIG. 3) and, at its upper levels,
one or more levels of cache memory. As depicted, processing
unit 202 includes an integrated memory controller IMC) 324
that controls read and write access to an associated system
memory 204 in response to requests received from processor
cores 302a-302% and operations received on system fabric
206.

In the illustrative embodiment, the cache memory hierar-
chy of processing unit 202 includes a store-through level one
(L1) cache 308 within each processor core 302¢-302% and a
store-in level two (I.2) cache 310. As shown, [.2 cache 310
includes an 1.2 array and directory 314, masters 312 and
snoopers 316. Masters 312 initiate transactions on system
fabric 206 and access [.2 array and directory 314 in response
to memory access (and other) requests received from the
associated processor cores 302. Snoopers 316 detect opera-
tions on system fabric 206, provide appropriate responses,
and perform any accesses to [.2 array and directory 314
required by the operations. Although the illustrated cache
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hierarchy includes only two levels of cache, those skilled in
the art will appreciate that alternative embodiments may
include additional levels (L3, L4, etc.) of private or shared,
on-chip or off-chip, in-line or lookaside cache, which may be
fully inclusive, partially inclusive, or non-inclusive of the
contents the upper levels of cache.

As further shown in FIG. 3, processing unit 202 includes
integrated interconnect logic 320 by which processing unit
202 1s coupled to system fabric 206, as well as an instance of
response logic 322, which in embodiments employing snoop-
based coherency, implements a portion of a distributed coher-
ency messaging mechanism that maintains coherency of the
cache hierarchies of processing unit 202. Processing unit 202
further includes one or more integrated /O (input/output)
controllers 330 (e.g., PCI host bridges (PHBs)) supporting
/O communication via one or more communication links
210. Processing unit 202 additionally includes a CAPP 110 as
previously described. As shown, CAPP 110 may optionally
include a dedicated I/O controller 332 (e.g., a PHB) by which
CAPP 110 supports communication over an external commu-
nication link 210% to which an AP 104% is also coupled. In
alternative embodiments, dedicated I/O controller 332 can be
omitted, and CAPP 110 can communicate with AP 104 via a
shared I/O controller 330. It should be noted that there may be
multiple CAPPs 110 per processing unit 202 and/or multiple
processing units 202 having one or more CAPPs 110, with
each CAPP 110 independently programmed to support the
operation and functionality of the attached AP 104.

Those skilled in the art will appreciate that data processing
system 200 can include many additional or alternative com-
ponents. Because such additional components are not neces-
sary for an understanding of the present invention, they are
not illustrated in FIG. 3 or discussed further herein.

Referring now to FIG. 4, there is depicted a time-space
diagram of an exemplary operation on the system fabric 206
of data processing system 200 of FIG. 2 in accordance with
one embodiment of a snoop-based coherence protocol. The
operation begins when a master 400 (e.g., a master 312 of an
L2 cache 310, a master within an I/O controller 330 or a
master in CAPP 110) issues a request 402 on system fabric
206. Request 402 preferably includes at least a transaction
type indicating a type of desired access and a resource iden-
tifier (e.g., real address) indicating a resource to be accessed
by the request. Common types of requests preferably include
those set forth below in Table 1.

TABLE I

Request

Description

READ

RWITM (Read-
With-Intent-To-

Modify)
BKILL

(Background Kill)
DCLAIM (Data

Claim)

DCBZ (Data Cache
Block Zero)

CASTOUT

WRITE

Requests a copy of the image of a memory block for query
purposes

Requests a unique copy of the image of a memory block with the
intent to update (modify) it and requires destruction of other
copies, if any

Requests invalidation of all cached copies of a target memory block
and cancellation of all reservations for the target memory block
Requests authority to promote an existing query-only copy of
memory block to a unique copy with the intent to update (modify)
it and requires destruction of other copies, if any

Requests authority to create a new unique copy of a memory
block without regard to its present state and subsequently modify
its contents; requires destruction of other copies, if any

Copies the image of a memory block from a higher level of
memory to a lower level of memory in preparation for the
destruction of the higher level copy

Requests authority to create a new unique copy of a memory
block without regard to its present state and immediately copy the
image of the memory block from a higher level memory to a
lower level memory in preparation for the destruction of the
higher level copy
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Further details regarding these operations and an exem-
plary cache coherency protocol that facilitates efficient han-
dling of these operations may be found in U.S. Pat. No.
7,389,388, which is incorporated by reference.

Request 402 is received by snoopers 404 distributed
throughout data processing system 200, including, for
example, snoopers 316 of L.2 caches 310, snoopers 326 of
IMCs 324, and snoopers within CAPPs 110 (see, e.g., snoop
machines (SNMs) 520 of FIG. 5). In general, with some
exceptions, snoopers 316 in the same [.2 cache 310 as the
master 312 of request 402 do not snoop request 402 (i.e., there
is generally no self-snooping) because a request 402 is trans-
mitted on system fabric 206 only if the request 402 cannot be
serviced internally by a processing unit 202. Snoopers 404
that receive and process requests 402 each provide a respec-
tive partial response (Presp) 406 representing the response of
at least that snooper 404 to request 402. A snooper 326 within
an IMC 324 determines the partial response 406 to provide
based, for example, upon whether the snooper 326 is respon-
sible for the request address and whether it has resources
available to service the request. A snooper 316 ofan [.2 cache
310 may determine its partial response 406 based on, for
example, the availability of its .2 array and directory 314, the
availability of a snoop machine instance within snooper 316
to handle the request, and the coherence state associated with
the request address in L2 array and directory 314.

The partial responses 406 of snoopers 404 are logically
combined either in stages or all at once by one or more
instances of response logic 322 to determine a systemwide
coherence response to request 402, referred to herein as a
combined response (Cresp) 410. In one preferred embodi-
ment, which will be assumed hereinafter, the instance of
response logic 322 responsible for generating combined
response 410 is located in the processing unit 202 containing
the master 400 that issued request 402. Response logic 322
provides combined response 410 to master 400 and snoopers
404 via system fabric 206 to indicate the response (e.g.,
success, failure, retry, etc.) to request 402. If combined
response 410 indicates success of request 402, combined
response 410 may indicate, for example, a data source for a
requested memory block, a cache state in which the requested
memory block is to be cached by master 400, and whether
“cleanup” operations invalidating the requested memory
block in one or more caches are required.

In response to receipt of combined response 410, one or
more of master 400 and snoopers 404 typically perform one
or more actions in order to service request 402. These actions
may include supplying data to master 400, invalidating or
otherwise updating the coherence state of data cached in one
or more caches, performing castout operations, writing back
data to a system memory 204, etc. If required by request 402,
a requested or target memory block may be transmitted to or
from master 400 before or after the generation of combined
response 410 by response logic 322.

In the following description, the partial response 406 of a
snooper 404 to arequest 402 and the actions performed by the
snooper 404 in response to the request 402 and/or its com-
bined response 410 will be described with reference to
whether that snooper is a Highest Point of Coherency (HPC),
a Lowest Point of Coherency (LLPC), or neither with respect to
the request address specified by the request. An LPC is
defined herein as a memory device or [/O device that serves as
the repository for a memory block. In the absence of a HPC
for the memory block, the LPC holds the true image of the
memory block and has authority to grant or deny requests to
generate an additional cached copy of the memory block. For
atypical request in the data processing system embodiment of
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FIG. 2, the LPC will be the memory controller 324 for the
system memory 204 holding the referenced memory block.
An HPC is defined herein as a uniquely identified device that
caches a true image of the memory block (which may or may
not be consistent with the corresponding memory block at the
LPC) and has the authority to grant or deny a request to
modify the memory block. Descriptively, the HPC may also
provide a copy of the memory block to a requestor in response
to an operation that does not modity the memory block. Thus,
for a typical request in the data processing system embodi-
ment of FIG. 2, the HPC, if any, will be an L.2 cache 310 or
CAPP 110. Although other indicators may be utilized to
designate an HPC for a memory block, a preferred embodi-
ment of the present invention designates the HPC, if any, for
a memory block utilizing selected cache coherency state(s),
which may be held, for example, in a cache directory.

Still referring to FIG. 4, the HPC, if any, for a memory
block referenced in a request 402, or in the absence of an
HPC, the LPC of the memory block, preferably has the
responsibility of protecting the transfer of ownership of a
memory block, if necessary, in response to a request 402. In
the exemplary scenario shownin FIG. 4, a snooper 404z at the
HPC (or in the absence of an HPC, the LPC) for the memory
block specified by the request address of request 402 protects
the transfer of ownership of the requested memory block to
master 400 during a protection window 412¢ that extends
from the time that snooper 404r determines its partial
response 406 until snooper 404 receives combined response
410 and during a subsequent window extension 4125 extend-
ing (preferably, for a programmable time) beyond receipt by
snooper 404n of combined response 410. During protection
window 412a and window extension 4124, snooper 404n
protects the transfer of ownership by providing partial
responses 406 to other requests specifying the same request
address that prevent other masters from obtaining ownership
(e.g., a retry partial response) until ownership has been suc-
cessfully transferred to master 400. If necessary, master 400
may also likewise initiate a protection window 413 to protect
its ownership of the memory block requested in request 402
following receipt of combined response 410.

As will be appreciated by those skilled in the art, the
snoop-based coherence protocol illustrated in FIG. 4 may be
implemented utilizing multiple diverse sets of coherence
states. In a preferred embodiment, the cache coherence states
employed within the protocol, in addition to providing (1) an
indication of whether a cache is the HPC for a memory block,
also indicate at least (2) whether the cached copy is unique
(i.e., is the only cached copy system-wide), (3) whether and
when the cache can provide a copy of the memory block to a
master of a memory access request for the memory block, (4)
whether the cached image of the memory block is consistent
with the corresponding memory block at the LPC (system
memory). These attributes can be expressed, for example, in
a variant of the well-known MESI (Modified, Exclusive,
Shared, Invalid) protocol including at least the coherence
states summarized below in Table II.

TABLE II
Consistent
Coherence state HPC? Unique?  Data Source? with LPC?
M (Modified) Yes  Yes Yes (before Cresp)  No
T (Shared-Owner)  Yes  Unknown Yes (after Cresp) No
S (Shared) No Unknown No Unknown
I (Invalid) No No No Na - data
is invalid
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In addition to the coherence states listed in Table 11, the
coherence protocol may include one or more additional tran-
sitional coherence states that can be employed, among other
things, to implement protection window 412a, window exten-
sion 4125, and protection window 413. For example, the
coherence protocol may include an HPC Protect state that
master 400 may assume in response to combined response
410 to protect transfer of HPC status (i.e., coherence owner-
ship) to that master 400 during protection window 413. Simi-
larly, the coherence protocol may additionally include a
Shared Protect state that a master 400 or a snooper 4047z may
assume in response to issuing or snooping a DClaim request,
respectively, in order to implement protection window 413 or
protection window 4124 and window extension 4125b. Fur-
ther, the coherence protocol may include an Shared Protect
Noted state that may be assumed to facilitate assumption of
HPC status by another master 400, as described further
herein.

Referring now to FIG. 5, there is depicted a more detailed
block diagram of an exemplary embodiment of the coherent
attached processor proxy (CAPP) 110 in processing unit 202
of FIG. 3. As shown, CAPP 110 is coupled to interconnect
logic 320 to permit CAPP 110 to transmit and receive address,
control and coherency communication via system fabric 206
on behalf of (i.e., as a proxy for) an AP 104 (e.g., AP 104%) to
which it is coupled by a communication link (e.g., commu-
nication link 210%).

CAPP 110 includes snooper logic 500, master logic 502,
transport logic 504, and as discussed above, an optional I/O
controller 332. Transport logic 504 has two interfaces, a first
by which transport logic 504 manages communication over
communication link 210% as necessary to comport with the
messaging protocol employed by communication link 210%
and/or AP 104, and a second by which transport logic 504
manages data communication with system fabric 206. Thus,
transport logic 504 may packetize data, may apply message
encapsulation/decapsulation or encryption/decryption, may
compute, append and/or verify checksums, etc., as is known
in the art.

Snooper logic 500 includes a decoder 510, a directory 512
of the contents of the data array 552 of the cache 106 of the
associated AP 104, a snoop table 514, a dispatcher 516, and a
set of snoop machines (SNMs) 520. Decoder 510 of snooper
logic 500 receives memory access requests from system fab-
ric 206 via interconnect logic 320 and optionally but prefer-
ably decodes the snooped memory access requests into a
corresponding set of internal snoop requests. The set of inter-
nal snoop requests implemented by decoder 510 is preferably
programmable (and in some embodiments dynamically
reprogrammable) to decouple the design of CAPP 110 from
that of AP 104 and to allow flexibility in mapping the memory
access requests of the primary coherent system 102 to the
request set of the associated AP 104. Following decoding by
decoder 510, the target address specified by the memory
access request is utilized to access directory 512 in order to
look up the coherence state of the target address with respect
to AP 104. It should be noted that the coherence state indi-
cated by directory 512 may not match or correspond to that
indicated by directory 550 of cache 106 in AP 104. Neverthe-
less, the use of the coherence state information in directory
512 in CAPP 110 rather than directory 550 in AP 104 enables
the bounded time frame in which a system-wide coherency
response is to be determined for each memory access request
in primary coherent system 102 to be met, regardless of
whether communication link 210 and/or AP 104 have lower
speed or reliability than other components of data processing
system (e.g., CAPP 110).
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The coherence state specified by directory 512 and the
internal request determined by decoder 510 are then utilized
by snoop table 514 to determine an appropriate partial
response (Presp) to the snooped memory access request. In
response to at least the internal snoop request determined by
decoder 510, coherence state output by directory 512 and
Presp output by snoop table 514, dispatcher 516 determines
whether or not any further action is or may possibly be
required in response to the memory access request (e.g.,
update of directory 512, sourcing the target cache line to the
requester, etc.), and if so, dispatches a snoop machine 520 to
manage performance of that action.

Master logic 502 optionally but preferably includes a mas-
ter table 530 that maps memory access and other requests
originated by AP 104% and received by CAPP 110 to internal
master requests. As with the mapping performed by decoder
510 of snooper logic 500, the mapping performed by master
table 530 decouples the design of CAPP 110 and AP 104 and
enables CAPP 110 to programmably support a wide variety of
diverse APs 104. In at least some embodiments, master table
530 supports dynamic reprogramming. Master logic 502 fur-
ther includes a set of master machines (MMs) 532 that ser-
vices internal master requests output by master table 530. In
a typical case, a master machine 532 allocated to service an
internal master request determines and manages an action to
be performed to service the internal request (e.g., initiating a
directory update and/or memory access request on system
fabric 206) based at least in part on the coherence state indi-
cated for the target address of the master request by directory
512. Data transfers to and from AP 104 via CAPP 110 in
response to the operation of snooper logic 500 and master
logic 502 are tracked via operation tags allocated from tag
pool 540.

As further indicated in FIG. 5, master logic 502 includes a
combined response (Cresp) table 534. In response to receipt
of'a combined response representing the systemwide coher-
ence response to a request, Cresp table 534 translates the
combined response received from system fabric 206 into an
internal Cresp message and distributes the internal Cresp
message to master machines 532 and snoop machines 520.
Again, the translation of combined responses to internal
Cresp messages by Cresp table 534 decouples the design of
AP 104 from that of primary coherent system 102 and enables
the interface provided by CAPP 110 to be programmable and
thus support a variety of diverse APs 104.

As noted above, several data structures (e.g., decoder 510,
snoop table 514, master table 530 and Cresp table 534) within
CAPP 110 are preferably programmable, and in some
embodiments, dynamically programmable. In one imple-
mentation, a control processor (e.g., service processor 220 or
any of processing units 202 running supervisory code (e.g.,
hypervisor)) dynamically updates the data structures by first
instructing AP 104 to invalidate its directory 550 and quiesce.
The control processor then updates one or more of the data
structures within CAPP 110. In response to completion of the
updates, the control processor instructs AP 104 to resume
normal processing. It should also be noted that the configu-
rations of master table 530 and snoop table 514 affects not
only the mapping (translation) of incoming AP requests and
snooped requests, respectively, but also the behavior of MMs
532 and SNMs 520. That is, the behavior of MMs 532 in
response to AP requests and the messages transmitted on
system fabric 206 and to AP 104 are also preferably deter-
mined by the configuration of master table 530. Similarly, the
behavior of SNMs 520 in response to snooped requests and
the messages transmitted on system fabric 206 and to AP 104
are preferably determined by the configuration of snoop table
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514. Thus, the behaviors and messages of MMs 532 and
SNMs 520 can be selectively changed by appropriate repro-
gramming of master table 530 and snoop table 514.

Referring now to FIG. 6, there is depicted a high level
logical flowchart of an exemplary process by which a CAPP
110 coherently handles a memory access request received
from an AP 104 in accordance with one embodiment. As with
the other logical flowcharts presented herein, it should be
appreciated that steps are presented in a logical rather than
strictly chronological order and at least some of the illustrated
steps may be performed concurrently or in a different order
than that illustrated.

The process shown in FIG. 6 begins at block 600 and then
proceeds to block 602, which illustrates an AP 104 generating
atarget address within the coherent address space of primary
coherent system 102. The target address identifies a coherent
storage location to which some type of access is desired, for
example, an access to obtain a query-only copy of a cache
line, update or invalidate contents of a storage location iden-
tified by the target address, writeback a cache line to system
memory 204, invalidate a page table entry utilized to perform
address translation, etc. AP 104 additionally performs a
lookup of the coherence state of the target address in AP
directory 550 (block 604). AP 104 then transmits to CAPP
110 a memory access request specifying the desired access,
together with the coherence state read from AP directory 550
and any associated data (block 606).

The coherence state transmitted with the AP memory
access request is referred to herein as the “expected state,” in
that in many cases, the type of memory access request
selected by AP 104 is predicated on the coherence state indi-
cated by AP directory 550. In a preferred embodiment, AP
104 transmits the memory access request to CAPP 110 even
in cases in which the expected state is or corresponds to an
HPC state that, if held in an .2 cache 310, would permit the
associated processor core 302 to unilaterally access the stor-
age location identified by the target address prior to receipt of
a combined response. This is the case because the coherence
state determination made by AP 104 is only preliminary, with
the final coherence state determination being made by CAPP
110 as described below.

In response to receipt of the AP memory access request,
master table 530 of master logic 502 optionally translates the
AP memory access request into an internal master request
(e.g., one of the set of requests within the communication
protocol specified for system fabric 206 (block 610). In a
typical embodiment, the translation includes mapping the
transaction type (ttype) indicated by the AP memory access
request to a ttype utilized on system fabric 206. In addition,
CAPP 110 determines a coherence state for the target address
specified by the memory access request with respect to AP
104 (block 616). In a preferred embodiment, the coherence
state is determined from multiple sources of coherence infor-
mation according to a predetermined prioritization of the
sources, which include (in order of increasing priority): direc-
tory 512, MMs 532 and SNMs 520. Thus, if CAPP 110
determines at block 616 that one of SNMs 520 is processing
a snooped memory access request that collides with the target
address, the coherence state indicated by that SNM 520 is
determinative. Similarly, if CAPP 110 determines at block
616 that no SNMs 520 is active processing a request that
collides with the target address, but the target address of the
AP memory access request collides with the target address of
a master request being processed by one of MMs 532, the
coherence state indicated by that MM 532 is determinative. If
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the request address does not collide with an active SNM 520
or MM 532, the coherence state indicated by CAPP directory
512 is determinative.

At block 620, master logic 502 determines whether or not
the expected state communicated with the AP memory access
request matches the coherence state determined by CAPP 110
at block 616. If so, master logic 502 allocates an MM 532 to
service the AP memory access request in an Active state in
which the MM 532 begins its activities to service the AP
memory access request (block 621). At block 622, the MM
532 allocated to service the AP memory access request deter-
mines whether or not servicing the AP memory access request
includes initiating a memory access request on system fabric
206. If not, the process passes through page connector B to
block 650, which is described further below.

If, however, MM 532 determines at block 622 that servic-
ing the AP memory access request includes initiating a
memory access request on system fabric 206, the MM 532
initiates the required memory access request on system fabric
206 on behalf of AP 104 (block 624). Within a bounded time,
master logic 502 receives the combined response (Cresp) for
the request (block 626), which Cresp table 534 optionally
translates to an internal Cresp message (block 628) and dis-
tributes to the MM 532 that initiated the memory access
request. As indicated at block 630, if the combined response
indicates Retry, meaning that at least one necessary partici-
pant could not service the request (e.g., was not available to
service the request or was already processing another request
having an address collision with the target address), the pro-
cess returns to block 616, which has been described. Again
determining the coherence state of CAPP 110 with respect to
the target address at block 616 after a Retry combined
response to the memory access request allows MM 532 to
detect and respond to any changes to the coherence state
occurred due to dispatch of a SNM 520 to service a conflicting
request for the target address while the MM 532 was working
on the memory access request. For example, if the dispatch of
a SNM 520 leads to a coherence state mismatch, MM 532
may fail the requested memory access request, as discussed
below with reference to block 644, or may defer servicing the
memory access request and enter a Parked state, as discussed
below with reference to block 642. If, on the other hand, the
combined response received at block 630 indicates that the
request succeeded, the MM 532 that initiated request per-
forms any data handling actions, cleanup actions, and/or
directory update actions required to complete servicing the
request (block 632). The data handling actions can include,
for example, MM 532 receiving requested data and forward-
ing the data to AP 104 or transmitting data from AP 104 on
system fabric 206. The cleanup actions can include, for
example, MM 532 issuing one or more kill requests on system
fabric 206 to invalidate one or more copies of a cache line
identified by the target address cached elsewhere within data
processing system 200. The directory update actions include
making any coherence update required by the request to both
CAPP directory 512 and AP directory 550. Thereafter, the
process shown in FIG. 6 ends at block 634.

Returning to block 620, in response to a determination that
the expected coherence state specified with the AP memory
access request does not match the coherence state determined
by CAPP 110, the process proceeds to blocks 640-644. In one
embodiment in which optional blocks 640-642 are omitted,
the MM 532 allocated to the service the request transmits a
Failure message to AP 104. In addition to the Failure mes-
sage, MM 532 optionally further indicates, with the Failure
message or in a separate directory update message, the coher-
ence state for the target address determined by CAPP 110,
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thus enabling AP 104 to update its AP directory 550 and to
subsequently initiate an appropriate AP memory access
request together with the appropriate expected state. There-
after, the process shown in FIG. 6 ends at block 634. In this
embodiment, AP 104 may require numerous requests to
access the target memory block if the target memory block is
highly contended by snoopers in primary coherent system
102. Accordingly, in an alternative embodiment including
blocks 640-642, master logic 502 is able to increase its pri-
ority for the target memory block with respect to snoopers in
primary coherent system 102 by entering a Parked state. In
particular, master logic 502 determines at block 640 whether
or not the coherence state mismatch detected at block 620 is
due to one of SNMs 520 being active servicing a snooped
memory access request that has an address collision with the
target address. If not, the process proceeds to block 644,
which has been described.

If, however, master logic 502 determines at block 640 that
the coherence state mismatch detected at block 620 is due to
one of SNMs 520 being active servicing a snooped memory
access request that has an address collision with the target
address, the process passes to block 642. Block 642 depicts
master logic 502 allocating an MM 532 in Parked state. In the
Parked state, MM 532 does not actively begin to service the
AP memory access request and does not inhibit the SNM 520
that is active on the target address from completing its pro-
cessing of the snooped memory access request, but does (in
one embodiment) inhibit any other of the SNMs 520 and
MMs 532 in the same CAPP 110 from transitioning to an
active state to service a request specifying an address that
collides with the target address of the AP memory access
request. The allocated MM 532 remains in the Parked state
until the SNM 520 that is active servicing the conflicting
snooped memory access request transitions to an Idle state,
and in response to this transition, itself transitions from the
Parked state to an Active state. The process then passes to
block 616 and following blocks, which have been described.
Returning to block 616 ensures that the SNM 520 that was
active on the target address did not change the CAPP coher-
ence state from the expected state. (It should be noted, how-
ever, that the active SNM 520 may update the coherence state
in CAPP directory 512 prior to its retirement, and the retire-
ment of the SNM 520 itself will likely change the composite
CAPP coherence state determined at block 616.)

In at least some embodiments, the allocation of an MM 532
in the Parked state does not absolutely inhibit any other of the
SNMs 520 and MMs 532 in the same CAPP 110 from tran-
sitioning to an active state. Instead, the effects of a MM 532 in
the Parked state (and/or an active state) on the dispatch of
other SNMs 520 and MMs 532 to service selected types of
conflicting requests can be varied, for example, via program
control (i.e., via execution of an appropriate CAPP control
instruction by one of processor cores 302 or AP 104) of the
composite coherence state determination described above
with reference to block 616. For example, to eliminate unnec-
essary traffic on system fabric 206, dispatcher 516 can be
permitted by programmable control to dispatch a SNM 520 in
an active state to service a snooped BKill request that invali-
dates the target memory block of a conflicting request being
handled by a MM 532 in the Parked state or an active state. In
cases in which another machine is dispatched to service a
conflicting request while a MM 532 is in the Parked state, the
MM 532 in the Parked state re-enters the Parked state when
the process of FIG. 6 proceeds along the path from block 642
to blocks 616, 620, 640 and returns to block 642. Master logic
502 further preferably implements a counter to bound the
number of times a MM 532 is forced to re-enter the Parked
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state in this manner for a single AP request. When a threshold
value of the counter is reached, the dispatch of other SNMs
520 and MMs 532 to service conflicting requests is then
inhibited to permit the MM 532 to exit the Parked state and
manage servicing of its AP request.

Referring now to block 650, in response to determining the
servicing the AP memory access request does not require
issuing a memory access request on system fabric 206, MM
532 updates the CAPP directory 512 as indicated by the AP
memory access request. MM 532 then transmits a Success
message to AP 104 to confirm the update to CAPP directory
512. The process thereafter terminates at block 632.

With reference now to FIG. 7, there is illustrated a high
level logical flowchart of an exemplary process by which a
CAPP 110 coherently handles a snooped memory access
request in accordance with one embodiment. The illustrated
process begins at block 700 and then proceeds to block 702,
which depicts snooper logic 500 of CAPP 110 receiving a
memory access request on system fabric 206 via interconnect
logic 320. At block 704, decoder 510 decodes the snooped
memory access request to determine the type of the request.
In addition, at block 706, CAPP 110 determines a coherence
state for the address referenced by the snooped memory
access request, for example, utilizing the methodology pre-
viously described with reference to block 616.

Based on the decoded type of the snooped memory access
request as determined at block 704 and the coherence state for
the referenced address as determined at block 706, snoop
table 514 determines and transmits on system fabric 206 a
partial response representing the coherence response of AP
104 to the snooped memory access request (block 710).

Referring now to block 712, dispatcher 516 of snooper
logic 500 determines based on the partial response deter-
mined at block 710 and the decoded memory access request
whether or not further action by CAPP 110 may be required to
service the snooped memory access request. In general, if the
coherence state determined at block 706 is Invalid, meaning
that AP cache 106 does not hold a valid copy of the memory
block identified by the referenced memory address, no further
action on the part of CAPP 110 or AP 104 is required to
service the snooped memory access request. If the coherence
state determined at block 706 is other than Invalid, at least
some additional action may be required on the part of CAPP
110 and/or AP 104 to service the snooped memory access
request.

In response to a negative determination at block 712, the
process depicted in FIG. 7 ends at block 730. If, however,
dispatcher 516 determines at block 712 that further action by
CAPP 110 and/or AP 104 may be required to service the
snooped memory access request, dispatcher 516 dispatches
one of SNMs 520 to manage any action required to service the
snooped memory access request (block 714). At block 716,
the dispatched SNM 520 determines whether the action
required to service the snooped memory access request can be
determined without the combined response representing the
systemwide coherence response to the memory access
request or whether the combined response is required to
determine the action required to appropriately service the
snooped memory access request. In response to a determina-
tion at block 716 that the combined response is not required to
determine the action to perform to service the snooped
memory access request, the dispatched SNM 520 manages
performance of any data handling and/or directory update
actions required by the decoded memory access request and
coherence state to service the memory access request (block
718). Thereafter, the process illustrated in FIG. 7 ends at
block 730.
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In response to a determination at block 716 that the com-
bined response is required to determine the action to be per-
formed to service the snooped memory access request, the
dispatched SNM 520 waits for the combined response, as
shown at block 720. In response to receiving the combined
response, Cresp table 534 optionally translates the combined
response into an internal Cresp message employed by CAPP
110 (block 722). The dispatched SNM 520 then manages
performance of any data handling and/or directory update
actions required by the combined response to service the
memory access request (block 724). Thereafter, the process
illustrated in FIG. 7 ends at block 730.

Referring now to FIG. 8, there is depicted a first time-space
diagram of an exemplary processing scenario in which an AP
104 requests to coherently update a memory block within the
primary coherent system 102 to which it is attached. For
purposes of illustration, the exemplary processing scenario
given in FIG. 8 and other similar figures will be described
with reference to the illustrative hardware embodiments
given in FIGS. 2-3 and 5.

As the exemplary processing scenario begins, an AP 104
processes a command (e.g., a software or firmware instruc-
tion executed within AP 104) specifying an update to a
memory block identified by a target address within the coher-
ent address space of primary coherent system 102. In
response to the command, AP 104 allocates one of its idle
finite state machines (FSMs) to manage performance of the
command and performs a lookup of the target address in AP
directory 550, as indicated by arrow 800. The AP FSM tran-
sitions from an idle state (indicated by “X”) to an Update
Active state and, based on a determination that the target
address has an Invalid coherence state with respect to AP
directory 550, transmits to CAPP 110 an update request with
an expected state of Invalid, as shown at reference numeral
802.

In response to receipt from AP 104 of the update request,
CAPP 110 translates the AP update request into a RWITM
request, which as indicated in Table I, is one of the set of
requests within the communication protocol specified for
system fabric 206. In addition, CAPP 110 determines a coher-
ence state for the target address specified by the memory
access request. Because in this case, the target address of the
RWITM request does not collide with an address that an MM
532 or SNM 520 is currently processing, the coherence state
of the target address for CAPP 110 is determined by CAPP
directory 512, which returns Invalid.

The previously idle MM 532 allocated to service the
RWITM request, in response to determining a coherence state
match between the expected state and the coherence state
determined by CAPP 110, transitions to a Valid state and
initiates the RWITM request on system fabric 206 as shown at
reference numeral 806. The RWITM request requests a copy
of the target memory block and further requests invalidation
of all other cached copies of the memory block (to permit AP
104 to modify the memory block). Within a bounded time,
MM 532 receives a combined response indicating success of
the RWITM request, as indicated at reference numeral 808.
MM 532 also receives a copy of the requested memory block,
possibly prior to, concurrently with, or after the combined
response.

In response to receiving the combined response indicating
success of the RWITM request, MM 532 transitions to the
HPC Protect state, thus initiating a protection window 413 for
the target address. In addition, as indicated by arrow 810, MM
532 updates the coherence state for the target address in
CAPP directory 512 to Modified. In addition, as indicated by
arrow 812, MM 532 transmits the copy of the requested
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memory block and a Complete message to AP 104. Thereaf-
ter, MM 532 returns to the Idle state. In response to receipt of
the requested memory block and Complete message, the AP
FSM directs the requested update to the target memory block,
storage of the updated target memory block in array 552, and
update of the coherence state for the target address in AP
directory 550 to Modified. The updates to AP cache 106 are
performed asynchronously to the update to CAPP directory
512, and due to the possibly unreliable connection provided
by communication link 210, may require CAPP 110 to
retransmit the Complete message one or more times. There-
after, the AP FSM returns to the Idle state.

It can also be appreciated by reference to FIG. 8 that
(depending on the presence or absence of other colliding
requests) the processing of a read request of AP 104 could be
handled similarly to the illustrated processing scenario, with
the following exceptions: the AP FSM would assume the
Read Active state rather than the Update Active state, MM
532 would assume the Shared Protect state following receipt
of'the combined response indicated by arrow 808 rather than
the HPC Protect state, and CAPP directory 512 and AP direc-
tory 550 would be updated to the Shared state rather than the
Modified State.

With reference now to FIG. 9, there is depicted a second
time-space diagram of an exemplary processing scenario in
which an AP 104 requests to coherently update a memory
block within the primary coherent system 102 to which it is
attached.

As the exemplary processing scenario begins, an AP 104
processes a command (e.g., a software or firmware instruc-
tion executed within AP 104) specifying an update to a
memory block identified by a target address within the coher-
ent address space of primary coherent system 102. In
response to the command, AP 104 allocates one of its idle
finite state machines (FSMs) to manage performance of the
command and performs a lookup of the target address in AP
directory 550, as indicated by arrow 900. The AP FSM tran-
sitions from an Idle state (indicated by “X”) to an Update
Active state and, based on a determination that the target
address has an Shared-Owner (T) coherence state with
respectto AP directory 550, transmits to CAPP 110 an update
request with an expected state of T, as shown at reference
numeral 902.

In response to receipt from AP 104 of the update request,
CAPP 110 translates the update request to a BKill request. As
described above with reference to Table I, the BKill request
requests invalidation of all other cached copies of the memory
block to permit AP 104 to modify its existing HPC copy of the
target memory block. CAPP 110 additionally determines a
coherence state for the target address specified by the update
request with respect to CAPP 110, as shown at reference
numeral 904. Because in this case, the target address of the
update request collides with an address that a SNM 520 is
currently processing, the state of that SNM 520 is determina-
tive, meaning that CAPP 110 determines an HPC Protect
state. Thus, the coherence state determined by CAPP 110
does not match the expected state. In embodiments in which
the optional functionality described above with reference to
blocks 640-642 of FIG. 6 is not implemented, CAPP 110
would respond to the update request by transmitting a Failure
message to AP 104. However, in the illustrated case in which
the optional functionality described above with reference to
blocks 640-642 of FIG. 6 is implemented, CAPP 110 allo-
cates an idle MM 532 to service the BKill request in the
Parked state, as indicated by arrow 906. As noted above, the
Parked state of the MM 532 inhibits any other SNM 520 from
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transitioning to an active state to service a snooped memory
access request for the target address.

In response to the SNM 520 that is active working on the
conflicting address transitioning to the Idle state without
modifying the matching T coherence state in CAPP directory
512 (e.g., as would be the case if the snooped memory access
request is a Read request), the MM 532 verifies that the
coherence state determined for CAPP 110 (which is the T
state recorded in CAPP directory 512 in the absence ofa SNM
520 or MM 532 active on a conflicting address) matches the
expected state, as discussed previously with reference to
block 616 of FIG. 6. In response to verifying that the coher-
ence state of CAPP directory 110 matches the expected state,
the MM 532 allocated to service the BKill request transitions
to the HPC Protect state (thus initiating a protection window
413 for the target address) and initiates the BKill request on
system fabric 206 as shown at reference numeral 910. In other
scenarios (not illustrated) in which SNM 520 modifies the
coherence state in CAPP directory 512 (e.g., as would be the
case if the snooped memory access request is a RWITM
request), MM 532 instead returns a failure message to AP 104
and returns to the Idle state.

Returning to the scenario shown in FIG. 9, in response to
the BKill request, MM 532 receives a combined response
indicating success of the BKill request, as indicated at refer-
ence numeral 912. In response to receiving the combined
response indicating success of the BKill request, MM 532
updates the coherence state for the target address in CAPP
directory 512 to Modified. In addition, as indicated by arrow
914, MM 532 transmits a Complete message to AP 104.
Thereafter, MM 532 returns to the Idle state. In response to
receipt of the Complete message, the AP FSM directs the
update of the coherence state for the target address in AP
directory 550 from T to Modified and the update of the cor-
responding cache line in AP array 552. Thereafter, the AP
FSM returns to the Idle state.

Referring now to FIG. 10, there is depicted a third time-
space diagram of an exemplary processing scenario in which
an AP 104 requests to coherently update a memory block
within the primary coherent system 102 to which it is
attached.

As the exemplary processing scenario shown in FIG. 10
begins, an AP 104 processes a command (e.g., a software or
firmware instruction executed within AP 104) specifying an
update to a memory block identified by a target address within
the coherent address space of primary coherent system 102.
In response to the command, AP 104 allocates one of its idle
finite state machines (FSMs) to manage performance of the
command and performs a lookup of the target address in AP
directory 550, as indicated by arrow 1000. The AP FSM
transitions from an Idle state (indicated by “X”) to an Update
Active state and, based on a determination that the target
address has an Shared (S) coherence state with respect to AP
directory 550, transmits to CAPP 110 an update request with
an expected state of S, as shown at reference numeral 1002.

In response to receipt from AP 104 of the update request,
CAPP 110 translates the update request to a DClaim request.
As described above with reference to Table I, the DClaim
request requests invalidation of all other cached copies of the
target memory block to permit AP 104 to modify its existing
Shared copy of the target memory block. CAPP 110 addition-
ally determines a coherence state for the target address speci-
fied by the update request with respect to CAPP 110, as shown
at reference numeral 1004. Because in this case, the target
address of the update request collides with an address of a
snooped DClaim request that a SNM 520 is currently pro-
cessing, the state of that SNM 520 is determinative, meaning
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that CAPP 110 determines the Shared Protect (SP) state.
Thus, the coherence state determined by CAPP 110 does not
match the expected state of Shared (see, e.g., block 620 of
FIG. 6). Consequently, CAPP 110 allocates an idle MM 532
to the DClaim request in the Parked (P) state, as illustrated by
arrow 1006 and as previously described with reference to
block 642 of FIG. 6.

In response to the snooped DClaim request, the SNM 520
that is active working on the snooped DClaim request updates
the coherence state of the target address in CAPP directory
512 to the Shared Protect Noted state, as indicated by arrow
1010, and additionally transmits a Kill message to AP 104 to
cause the coherence state in AP directory 550 to be updated to
the Invalid state, as indicated by arrow 1012. As shown in
FIG. 10, the SNM 520 thereafter returns to the Idle state.

In response to the SNM 520 returning to the Invalid state,
the MM 532 allocated to the DClaim request transitions from
the Parked state to an active state and again determines the
coherence state of the target memory address with respect to
CAPP 110, as described above with reference to block 616 of
FIG. 6. Because the Parked state inhibits the dispatch of any
other SNM 520 to service a conflicting address, the coherence
state specified by CAPP directory 512 (i.e., Shared Protect
Noted) is determinative of the coherence state of the target
memory address with respect to CAPP 110. In response to
detecting a mismatch of the coherence state in CAPP direc-
tory 512 (Shared Protect Noted) with the expected state
(Shared), the MM 532 provides a Failure message to AP 104
to indicate failure of the DClaim request of AP 104, as indi-
cated by arrow 1014.

Due to the potential unreliability of communication link
210, the invalidation in AP directory 550 initiated by SNM
520 is preferably confirmed by receipt of MM 532 of a full
handshake from AP 104 as indicated by arrow 1018. If MM
532 does not receive a handshake from AP 104 confirming
invalidation of the target memory address in AP directory 550
within a predetermined time period, MM 532 preferably
retries a Kill message until the handshake is returned by AP
104 or a failure threshold is reached. In response to receipt of
the handshake from AP 104, the MM 532 allocated to the
DClaim request returns to the Idle state.

As will be appreciated, in an alternative embodiment,
CAPP 110 can instead accommodate for the possible unreli-
ability of communication link 210 by leaving the SNM 520
allocated to service the conflicting DClaim request in the
Shared Protect state until the SNM 520 receives the hand-
shake from AP 104. However, this alternative embodiment
consumes more resources in that it requires both the SNM 520
and MM 532 to remain active for longer periods of time, thus
reducing the availability of resources to service other memory
access requests received from AP 104 or snooped on system
fabric 206.

The AP FSM, in response to receiving Kill message 1012,
transitions from the Update Active state to a Kill Active state,
reflecting a need to invalidate the target memory block in
CAPP directory 512. Accordingly, the AP FSM performs a
lookup in AP directory 550 (as indicated by arrow 1020)
transmits a Kill request 1022 to CAPP 110 specifying the
same target memory address as its earlier update request and
indicating an expected coherence state of Shared Protect
Noted (which the AP FSM received in Kill message 1012). In
response to the Kill request, master logic 502 again deter-
mines the coherence state of the target memory address with
respect to CAPP 110 as described above with respect to block
616 of FIG. 6, and as indicated in FIG. 10 by arrow 1024. In
response, to determining that the coherence state of the target
memory address with respect to CAPP 110 (i.e., the Shared
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Protect Noted state indicated by CAPP directory 512)
matches the expected state indicated by AP 104, master logic
502 allocates a MM 532 (which could be the same MM 532 or
a different MM 532) in an Active (A) state to service the AP
Kill request, as illustrated by arrow 1026 and described above
with reference to block 621 of FIG. 6. Because the Kill
request does not require a memory access request to be issued
on system fabric 206, the MM 532 updates the CAPP direc-
tory 512 as indicated by the AP memory access request, as
described above with reference to block 650 of FIG. 6, in this
case by invalidating the target memory address in CAPP
directory 512. This update to CAPP directory 512 is illus-
trated in FI1G. 10 by arrow 1028. On completion of the update
to CAPP directory 512, MM 532 also transmits a Success
message to AP 104 to confirm the update to CAPP directory
512, as indicated in FIG. 10 by arrow 1030 and as described
above with respect to block 652 of FIG. 6.

After the scenario illustrated in FIG. 10, the processing
scenario illustrated in FIG. 8 can be performed in order to
allow AP 104 to update the target memory block of primary
coherent system 102.

One common computational model in multiprocessor data
processing systems, such as data processing systems 100 and
200, is a producer-consumer model in which one or more
threads of execution produce a data set and one or more other
threads consume the data set. Assuming proper software syn-
chronization of the activity of the various threads, for
example, utilizing control blocks, interrupts, locks, messag-
ing or other synchronization constructs, a thread of execution
in a producer-consumer model should experience little or no
contention from other threads for cachelines within the data
set on which it is working. In at least some use scenarios, one
or more APs 104 can be employed as producers and/or con-
sumers of the data set to perform computational functions
such as encryption or decryption, matrix transformations,
textual translation, etc.

In such use scenarios, it would be advantageous if the
CAPP 110 participating in coherent communication in pri-
mary coherent system 102 on behalf on the AP 104 could
protect the data set or particular regions thereof from conflict-
ing accesses (e.g., by other APs 104 or processing units 202)
while the AP 104 is working on the data set. With a snoop-
based coherence protocol, protecting the data set entails
tracking the addresses of the data structure in CAPP directory
512 and providing Retry partial responses to conflicting
accesses. However, because the data set on which an AP 104
is working can be large (even if the data structure containing
the data set is sparsely populated and the data set is compara-
tively small), it can be impractical from a cost and perfor-
mance standpoint to grow CAPP directory 512 to a sufficient
size to track the entire data structure if each directory entry is
utilized to track a small coherence granule (e.g., a single
cacheline containing 128 bytes of data). However, it is simi-
larly impractical from a performance standpoint for each
directory entry in CAPP directory 512 simply to track large
coherence granules (e.g., memory pages) because the amount
of coherency communication overhead (e.g., invalidations
and retries) required to obtain authority to update the coher-
ence granules. Consequently, in at least one embodiment,
CAPP directory 512 is preferably implemented with a hybrid
coarse/precise structure providing multiple (e.g., two) levels
of directory for the contents of a single cache array (i.e., AP
array 552).

With reference now to FIG. 11, there is illustrated a more
detailed view of a hybrid CAPP directory 512 in accordance
with one embodiment. In the depicted embodiment, CAPP
directory 512 includes a coarse directory 1100 and a precise
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directory 1102. In the depicted example, coarse directory
1100 is a four way set-associative directory including way 0
1110a, way 1 11105, way 2 1110¢, and way 3 11104. In one
example, each of ways 1110a-11104 may have a capacity of
256 entries, each having two sectors. Of course, other
embodiments may have more or fewer ways, entries, and/or
sectors. When accessed by the target address of a memory
access request, an index field of the target address is utilized
to index into each of ways 1110a-11104 and to read out the
contents the relevant entry. A series of multiplexers 1112
receives the directory entries read out from ways 1110a-
11104 and selects one of the sectors of the entries based on a
sector select field from the target address (which in the illus-
trated example of two sectors can include a single bit). A
series of comparators 1114 compares the address tags
recorded in the sectors selected by multiplexers 1112 with an
address tag field of the target address to make a hit/miss
determination for the target address in coarse directory 1100.

As further depicted in FIG. 11, the depicted embodiment of
precise directory 1102 is an eight way set-associative direc-
tory including ways 0-7, each including two ranks 0-1. Thus,
in this embodiment, precise directory 1102 includes sixteen
directory arrays, which are identified in rank O by reference
numerals 1122¢0-1122/0 and are identified in rank 1 by
reference numerals 112241-1122/1. In one example, each of
the directory arrays may have a capacity of 256 entries. Of
course, other embodiments may have more or fewer ways,
entries and/or ranks. When accessed by a target address of a
memory access request, an index field of the target address is
utilized to index into each of directory arrays 112240-1122/0
and 112241-1122/1 to read out the contents the relevant
entry. A series of multiplexers 1124 receives the directory
entries read out from the directory arrays and selects the
entries of one of the ranks based on a rank select field from the
target address (which in the illustrated example of two ranks
can include a single bit). A series of comparators 1126 com-
pares the address tags recorded in the entries selected by
multiplexers 1124 with an address tag field of the target
address to make a hit/miss determination for the target
address in precise directory 1102.

It should further be understood that in some embodiments,
directory contention in CAPP directory 512 can be reduced
by implementing multiple coarse directories 1100 and mul-
tiple precise directories 1102, for example, a coarse directory
1100 and precise directory 1102 for even request addresses
and a coarse directory 1100 and precise directory 1102 for
odd request addresses. Directory contention can alternatively
or additionally further be reduced by implementing each
coarse directory 1100 and precise directory 1102 as a dual
ported directory, with separate ports for read and write
accesses. Further, in some embodiments, CAPP directory 512
includes or is associated with a configuration register 1130
having a plurality of settings that can be set by hardware
and/or software to determine the sizes and configurations of
coarse directory 1100 and precise directory 1102. For
example, in one embodiment, a precise directory 1102 having
eight ways, two ranks and 256 entries per directory array can
be configured by appropriate settings of configuration regis-
ter 1130 to have a maximum addressable capacity of 1 MB,
512 kB, or 256 kB. Similarly, in one embodiment, a coarse
directory 1100 having four ways and 256 entries per way can
be configured with either (1) two 4 kB sectors per entry, which
yields a 2 MB addressable capacity per way and 8 MB total
addressable capacity, or (2) four 64 kB sectors per entry,
which yields 64 MB addressable capacity per way and 256
MB total addressable capacity.
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In a preferred embodiment, each CAPP directory 512 and
its constituent coarse directory 1100 and precise directory
1102 is preferably independently configured and controlled
by the associated AP 104. Thus, the AP 104 determines the
configurations of coarse directory 1100 and precise directory
1102 and further controls which of coarse directory 1100 and
precise directory 1102 will be employed to track each cach-
eline of interest to AP 104 (whether or not such cachelines are
held in array 552 of AP cache 106). In various scenarios, AP
104 can specify that an entry for a cacheline is held only in
coarse directory 1100 (e.g., in an entry corresponding to
numerous cachelines), is held only in precise directory 1102
(e.g., in an entry corresponding to only a single cacheline), or
is held in both coarse directory 1100 and precise directory
1102. In at least some embodiments, an AP 104 can specity
which of directories 1100, 1102 is/are to track a given cach-
eline (and can change which directory or directories track a
given cacheline) utilizing explicit special-purpose directory
write commands directed to the associated CAPP 110 or in
one or more fields of AP requests (e.g., read, RWITM,
DClaim, etc.) issued by the AP 104 to its associated CAPP
110.

With proper management, contention for cachelines of
interest to an AP 104 that have an associated entry in coarse
directory 1100 should be relatively low. However, contention
for such cachelines may occasionally occur. To avoid conten-
tion for a few cachelines from unnecessarily invalidating an
entry in coarse directory 1100 representing numerous cach-
elines, AP 104 preferably implements a directory manage-
ment policy that permits entries in coarse directory 1100 to be
“holey,” that is, to represent with a data-valid coherence state
a block of multiple contiguous cache lines, not all of which
are valid in AP cache 550. This directory management policy
also enables AP 104 to establish, in coarse directory 1100, one
or more entries corresponding to a working data set prior to
AP 104 retrieving and/or producing the corresponding cach-
elines of data. As noted further below, entries in coarse direc-
tory 1100, whether “holey” or not, preferably represent the
corresponding collection of multiple contiguous cachelines
with a single coherence state corresponding to the highest
coherence state of any of the associated cachelines (e.g., M, T,
S and I in descending order in the exemplary set of coherence
states given in Table II).

Referring now to FIG. 12, there is depicted a more detailed
flowchart of an exemplary method of determining the CAPP
coherence state in an embodiment having a hybrid CAPP
directory 512 including a coarse directory 1100 and a precise
directory 1102. The illustrated process can be performed, for
example, at block 616 of FIG. 6 and at block 706 of FIG. 7.

The process of FIG. 12 begins at block 1200 and then
proceeds to blocks 1202-1208, which illustrate CAPP 110
determining whether or not a target address (i.e., the address
specified by an AP request or a snooped request) hits one of
SNMs 520, MMs 532, precise directory 1102 and coarse
directory 1100. If the target address does not hit any of SNMs
520, MMs 532, precise directory 1102 and coarse directory
1100, then CAPP 110 determines that the CAPP coherence
state for the target address is invalid (block 1210). The pro-
cess of FIG. 12 then terminates at block 1220.

If, on the other hand, the target address hits one or more of
SNMs 520, MMs 532, precise directory 1102 and coarse
directory 1100, CAPP 110 applies a prioritization to the
results of the lookup of the target address. For example, if
CAPP 110 determines at block 1202 that the target address
hits one of SNMs 520, then CAPP 110 utilizes, as the CAPP
coherence state, the coherence state indicated by the SNM
520 working on the target address (block 1212). If CAPP 110
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determines at block 1204 that the target address missed SNMs
520 and hit one of MMs 532, then CAPP 110 utilizes, as the
CAPP coherence state, the coherence state indicated by the
MM 532 working on the target address (block 1214). IfCAPP
determines at block 1206 that the target address missed SNMs
520 and MMs 532 and hit an entry in precise directory 1102,
then CAPP 110 utilizes, as the CAPP coherence state, the
coherence state indicated by the matching entry in precise
directory 1102 (block 1216). Finally, if CAPP determines at
block 1208 that the target address missed SNMs 520, MM
532 and precise directory 1102 and hit in coarse directory
1100, then CAPP 110 utilizes, as the CAPP coherence state,
the coherence state indicated by the matching entry in coarse
directory 1100 (block 1218). Following any of blocks 1212-
1218, the process of FIG. 12 ends at block 1220.

With reference now to FIG. 13, there is illustrated a high
level logical flowchart of an exemplary method by which a
CAPP 110 implements cache management commands of the
AP 104 in an embodiment having a hybrid CAPP directory
512 including a coarse directory 1100 and a precise directory
1102. The process of FIG. 13 may be performed, for example,
in response to an explicit directory write command or as part
of the directory update operations performed at block 632 of
FIG. 6 in response to a successful AP request.

The process of FIG. 13 begins at block 1300 and then
proceeds to block 1302, which illustrates CAPP 110 deter-
mining which directory or directories were specified by the
associated AP 104 (e.g., in a directory write command or in an
AP request) to track a given memory block containing one or
more cachelines. If AP 104 specified that the memory block
be tracked by coarse directory 1100, then, if required (i.e., if
such an entry does not already reside in coarse directory
1100), CAPP 110 installs an entry corresponding to the
memory block in coarse directory 1100, as shown at block
1304. For example, if AP 104 determines that it is to produce
or consume a data set comprising numerous contiguous cach-
elines of data, AP 104 may instruct CAPP 110 to install a
corresponding entry representing the contiguous cachelines
in coarse directory 1100. If, for example, AP 104 is to con-
sume the data set, AP 104 may instruct CAPP 110 to establish
the entry in coarse directory 1100 in the first of a series of
RWITM requests that load the data set into AP cache 550 for
processing by AP 104. As shown at block 1306, CAPP 110
preferably sets the coherence state field of the entry in coarse
directory 1100 to a coherence state reflect the highest coher-
ence state of all the cachelines in the associated memory
block. Thus, if the coherence state of at least one cacheline in
the associated memory block is Modified (as would be the
case following a RWITM request successtully loading an
initial cacheline of a set of multiple contiguous cachelines),
the coherence state field of the entry in coarse directory 1100
would be set to the Modified coherence state at block 1306.
Following block 1306, the process of FIG. 13 ends at block
1320.

In response to a determination at block 1302 that AP 104
has specified that an entry is to be installed in precise direc-
tory 1102 (e.g., solely or in addition to the installation of an
entry in coarse directory 1100), CAPP 110 installs an entry
corresponding to a particular cacheline into precise directory
1102, if needed (block 1310). AP 104 may opt to install an
entry in precise directory 1102, for example, if contention for
the cacheline is experienced or if AP 104 has completed
producing a data set including the cacheline and is now ready
for the cacheline to be sourced via CAPP 110 to one or more
consumers in data processing system 200. As shown at block
1312, CAPP 110 additionally sets the coherence field of the
entry in precise directory 1102 as indicated, for example, by
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a combined response for a request targeting the cacheline or
as specified by AP 104. Thereafter, the process of FIG. 13
ends at block 1320.

Referring now to FIG. 14, there is depicted a high level
logical flowchart of an exemplary method by which a CAPP
110 determines an partial response (Presp) for a snooped
request in an embodiment having a hybrid CAPP directory
512 including a coarse directory 1100 and a precise directory
1102. The illustrated process may be performed, for example,
in response to a CAPP 110 snooping a memory access
request, as illustrated block 710 of FIG. 7.

The process of FIG. 14 begins at block 1400 and then
proceeds to block 1402, which depicts a determination of
whether or not the target address of the snooped memory
access request hit or missed in SNMs 1202, MMs 1204 and
CAPP directory 512, as illustrated, for example, at block 706
of FIG. 7 and at blocks 1202-1208 of FIG. 12. In response to
a determination that the target address of the snooped
memory access request missed in CAPP 110, CAPP 110 may
provide a Null Presp, as shown at block 1404. Following
block 1404, the process of FIG. 14 ends at block 1412.

Referring again to block 1402, in response to a determina-
tion at the target address of the snooped memory access hit in
CAPP 110, CAPP 110 determines the appropriate Presp
based on the snooped memory access request and the com-
posite CAPP coherence state determined according to the
process of FIG. 12, as depicted at block 1406. For memory
access requests that hit solely in coarse directory 1100, CAPP
110 cannot intervene the target cacheline or update the coher-
ence state of the target cacheline in coarse directory 1100
because the coarse directory entry represents a granule
including multiple cachelines. Accordingly, as shown at
blocks 1408-1410, in at least cases in which the memory
access request hit solely in coarse directory 1100, CAPP 110
notifies AP 104 of the hit in coarse directory 1100, thus
indicating to AP 104 a need to install an entry for the target
cacheline in precise directory 1102. Thereafter, in response to
a directory write command from AP 104 instructing CAPP
110 to install an entry for the target address in precise direc-
tory 1102, CAPP 110 installs an entry in precise directory
1102 utilizing the coherence state specified by AP 104 (AP
104 tracks the precise state of the relevant cacheline in its AP
directory 550). The installation of the entry in precise direc-
tory 1102 enables CAPP 110 to thereafter service the memory
access request if retried by the requester.

For example, if the target address of a snooped RWITM or
DClaim request hit solely in coarse directory 1100 in a non-
HPC coherence state (e.g., S), then CAPP 110 determines a
Shared Presp at block 1406 (where the Shared Presp indicates
that AP cache 106 may possibly hold a copy of the target
cacheline) and notifies AP 104 at block 1410. In response to
the Shared Presp, the requesting master initiates a back-
ground kill (BKill) operation, which continues until AP 104
installs the target cacheline into precise directory 1102. Once
the target cacheline is installed in coarse directory 1102, the
BKill operation is allowed to complete, either because the
individual target cacheline is updated by CAPP 110 from
Shared to Invalid in precise directory 1102 or because the
target cacheline was not in (i.e., was a hole in) the coarse
granule and was installed by AP 104 into coarse directory
1102 in the Invalid coherence state.

As another example, if the target address of a snooped
memory access request hit solely in coarse directory 1100 in
an HPC coherence state (e.g., M or T), then CAPP 110 deter-
mines a Retry Presp at block 1406 and notifies AP 104 at
block 1410. The Retry Presp is provided in this case because
CAPP 110 cannot appropriately service a memory access
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request directed to a particular target cacheline by reference
to the coherence state of the coarse directory entry of the
granule containing the target cacheline, as the granule’s
coherence state may not be the actual coherence state of the
individual target cacheline. In response to the Retry Presp,
which would indicate a possibly protecting HPC to the
requesting master, the requesting master continues to reissue
the memory access request for the target cacheline until AP
104 installs the target cacheline into precise directory 1102.
Once the target cacheline is installed into precise directory
1102, CAPP 110 can either intervene the target cacheline
(because the target cacheline was held in the coarse granule),
or the memory access request is serviced by the LPC (e.g., a
system memory 204) because the target cacheline was not in
(i.e., was a hole in) the coarse granule and was installed into
coarse directory 1102 in the Invalid coherence state by AP
104.

Following block 1408 or 1410, the process of FIG. 14 ends
at block 1412.

With reference now to FIG. 15, there is illustrated a high
level logical flowchart of an exemplary method by which an
AP 104 manages a hybrid CAPP directory 512 including a
coarse directory 1100 and a precise directory 1102. The pro-
cess of FIG. 15 begins at block 1500 and then proceeds to
block 1502, which depicts AP 104 determining whether or not
AP 104 has received notification from CAPP 110 of a
snooped memory access request that hit in coarse directory
1100, for example, as described above with reference to block
1410. (It should be appreciated that CAPP 110 may supply
such notifications to AP 104 in cases in which the snooped
memory access request hits in one or more of SNMs 520,
MMs 532 and precise directory 1102.) In response to a nega-
tive determination, the process iterates at block 1502. If,
however, AP 104 determines at block 1502 that it has received
a notification from the associated CAPP 110 of a snooped
memory access request that hit in coarse directory 1100, AP
104 determines at block 1504 whether or not the target
address of the memory access request is a hole in the coarse
granule, that is, whether or not AP cache directory 550 indi-
cates an Invalid state for the target address. In response to an
affirmative determination at block 1504, AP 104 issues a
directory write command directing CAPP 110 to install into
precise directory 1102 a precise entry for the target cacheline
indicating the Invalid coherence state (block 1506). Thereat-
ter, the process of FIG. 15 ends at block 1520.

Returning to block 1504, in response to AP 104 determin-
ing that the target cacheline is not a hole in the coarse granule,
the process proceeds to block 1508, which illustrates AP 104
issuing a directory write command directing CAPP 110 to
install into precise directory 1102 a precise entry for the target
cacheline using the coherence state of the coarse directory
entry. In addition, AP 104 marks the target cacheline as a hole
in the coarse granule, for example, in a bit vector in which
each bit represents a corresponding cacheline in the coarse
granule. As will be appreciated, the number of bits marked in
the bit vector (e.g., set to a predetermined one of “1” or “0”)
provides a measure of how “holey” the granule associated
with the coarse directory entry is. At block 1510, AP 104 may
additionally determine whether or not the number of holes
(i.e., invalid cachelines) in the coarse granule satisfies (e.g., is
equal to or greater than) a decomposition threshold. This
determination can be made, for example, by a population
count of bits set to a selected state (i.e., “1” or “0”) in the
corresponding bit vector. In response to a negative determi-
nation at block 1510, the process of FIG. 15 ends at block
1520. If, however, AP 104 determines at block 1510 that the
decomposition threshold is satisfied for the coarse granule
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containing the target cacheline, AP 104 instructs CAPP 110 to
decompose the corresponding entry in coarse directory 1100.
In particular, AP 104 instructs CAPP 110 to install in precise
directory 1102 one or more entries corresponding to valid
cachelines within the associated coarse granule (e.g., an entry
for each cacheline held in AP cache 106 in a data-valid coher-
ence state) and to invalidate the relevant entry in coarse direc-
tory 1100. Following block 1512, the process of FIG. 15 ends
at block 1520.

In an alternative process, at block 1512 AP 104 may instead
be configured to or may choose to (e.g., based on dynamic
workload or a selected operating mode) initiate writeback to
system memory 204 of any modified cachelines within the
granule represented by the entry in coarse directory 1100,
creating a progressively more “holey” entry. In response to
completion of the writeback of any modified cachelines in the
coarse granule represented by the entry in coarse directory
1100, AP 104 can then invalidate the entry in coarse directory
1100, thus freeing CAPP 110 from the responsibility for
intervening requested cachelines in the granule and allowing
any requesters to satisfy memory access requests targeting the
granule from system memory 204 (or another intervening
cache).

FIG. 15 illustrates a particular implementation of demand-
based directory management process in which AP 104 per-
forms directory management operations on coarse directory
1100 in response to receipt of notification by CAPP 110 of
snooped memory access requests that hit in coarse directory
1100. It should be appreciated that the described process is
merely exemplary and alternative or additional directory
management techniques, including those initiated by AP 104
in the absence of a snooped memory access request hitting in
coarse directory 1100, may be employed. Further, it should be
appreciated that AP 104 may optionally employ a corre-
sponding process to compose coarse directory entries from
multiple precise directory entries as needed to accommodate
its current workload and to free storage space in precise
directory 1102.

Referring now to FIG. 16, there is depicted a block diagram
of'an exemplary design flow 1600 used for example, in semi-
conductor IC logic design, simulation, test, layout, and manu-
facture. Design flow 1600 includes processes, machines and/
or mechanisms for processing design structures or devices to
generate logically or otherwise functionally equivalent rep-
resentations of the design structures and/or devices described
above and shown in FIGS. 1-3, 5 and 11. The design struc-
tures processed and/or generated by design flow 1600 may be
encoded on machine-readable transmission or storage media
to include data and/or instructions that when executed or
otherwise processed on a data processing system generate a
logically, structurally, mechanically, or otherwise function-
ally equivalent representation of hardware components, cir-
cuits, devices, or systems. Machines include, but are not
limited to, any machine used in an IC design process, such as
designing, manufacturing, or simulating a circuit, compo-
nent, device, or system. For example, machines may include:
lithography machines, machines and/or equipment for gen-
erating masks (e.g. e-beam writers), computers or equipment
for simulating design structures, any apparatus used in the
manufacturing or test process, or any machines for program-
ming functionally equivalent representations of the design
structures into any medium (e.g. a machine for programming
a programmable gate array).

Design flow 1600 may vary depending on the type of
representation being designed. For example, a design flow
1600 for building an application specific IC (ASIC) may
differ from a design flow 1600 for designing a standard com-
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ponent or from a design flow 1600 for instantiating the design
into a programmable array, for example a programmable gate
array (PGA) or a field programmable gate array (FPGA)
offered by Altera® Inc. or Xilinx® Inc.

FIG. 16 illustrates multiple such design structures includ-
ing an input design structure 1620 that is preferably processed
by a design process 1610. Design structure 1620 may be a
logical simulation design structure generated and processed
by design process 1610 to produce a logically equivalent
functional representation of a hardware device. Design struc-
ture 1620 may also or alternatively comprise data and/or
program instructions that when processed by design process
1610, generate a functional representation of the physical
structure of a hardware device. Whether representing func-
tional and/or structural design features, design structure 1620
may be generated using electronic computer-aided design
(ECAD) such as implemented by a core developer/designer.
When encoded on a machine-readable data transmission, gate
array, or storage medium, design structure 1620 may be
accessed and processed by one or more hardware and/or
software modules within design process 1610 to simulate or
otherwise functionally represent an electronic component,
circuit, electronic or logic module, apparatus, device, or sys-
tem such as those shown in FIGS. 1-3, 5 and 11. As such,
design structure 1620 may comprise files or other data struc-
tures including human and/or machine-readable source code,
compiled structures, and computer-executable code struc-
tures that when processed by a design or simulation data
processing system, functionally simulate or otherwise repre-
sent circuits or other levels of hardware logic design. Such
data structures may include hardware-description language
(HDL) design entities or other data structures conforming to
and/or compatible with lower-level HDL design languages
such as Verilog® and VHDL, and/or higher level design lan-
guages such as C or C++.

Design process 1610 preferably employs and incorporates
hardware and/or software modules for synthesizing, translat-
ing, or otherwise processing a design/simulation functional
equivalent of the components, circuits, devices, or logic struc-
tures shown in FIGS. 1-3, 5 and 11 to generate a netlist 1680
which may contain design structures such as design structure
1620. Netlist 1680 may comprise, for example, compiled or
otherwise processed data structures representing a list of
wires, discrete components, logic gates, control circuits, I/O
devices, models, etc. that describes the connections to other
elements and circuits in an integrated circuit design. Netlist
1680 may be synthesized using an iterative process in which
netlist 1680 is resynthesized one or more times depending on
design specifications and parameters for the device. As with
other design structure types described herein, netlist 1680
may be recorded on a machine-readable storage medium or
programmed into a programmable gate array. The medium
may be a non-volatile storage medium such as a magnetic or
optical disk drive, a programmable gate array, a compact
flash, or other flash memory. Additionally, or in the alterna-
tive, the medium may be a system or cache memory, or buffer
space.

Design process 1610 may include hardware and software
modules for processing a variety of input data structure types
including netlist 1680. Such data structure types may reside,
for example, within library elements 1630 and include a set of
commonly used elements, circuits, and devices, including
models, layouts, and symbolic representations, for a given
manufacturing technology (e.g., different technology nodes,
32 nm, 45 nm, 90 nm, etc.). The data structure types may
further include design specifications 1640, characterization
data 1650, verification data 1660, design rules 1670, and test
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data files 1685 which may include input test patterns, output
test results, and other testing information. Design process
1610 may further include, for example, standard mechanical
design processes such as stress analysis, thermal analysis,
mechanical event simulation, process simulation for opera-
tions such as casting, molding, and die press forming, etc.
One of ordinary skill in the art of mechanical design can
appreciate the extent of possible mechanical design tools and
applications used in design process 1610 without deviating
from the scope and spirit of the invention. Design process
1610 may also include modules for performing standard cir-
cuit design processes such as timing analysis, verification,
design rule checking, place and route operations, etc.

Design process 1610 employs and incorporates logic and
physical design tools such as HDL compilers and simulation
model build tools to process design structure 1620 together
with some or all of the depicted supporting data structures
along with any additional mechanical design or data (if appli-
cable), to generate a second design structure 1690. Design
structure 1690 resides on a storage medium or programmable
gate array in a data format used for the exchange of data of
mechanical devices and structures (e.g., information stored in
a IGES, DXF, Parasolid XT, JT, DRG, or any other suitable
format for storing or rendering such mechanical design struc-
tures). Similar to design structure 1620, design structure 1690
preferably comprises one or more files, data structures, or
other computer-encoded data or instructions that reside on
transmission or data storage media and that when processed
by an ECAD system generate a logically or otherwise func-
tionally equivalent form of one or more of the embodiments
of'the invention shown in FIGS. 1-3, 5 and 11. In one embodi-
ment, design structure 1690 may comprise a compiled,
executable HDL simulation model that functionally simu-
lates the devices shown in FIGS. 1-3, 5 and 11.

Design structure 1690 may also employ a data format used
for the exchange of layout data of integrated circuits and/or
symbolic data format (e.g., information stored in a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable format
for storing such design data structures). Design structure
1690 may comprise information such as, for example, sym-
bolic data, map files, test data files, design content files,
manufacturing data, layout parameters, wires, levels of metal,
vias, shapes, data for routing through the manufacturing line,
and any other data required by a manufacturer or other
designer/developer to produce a device or structure as
described above and shown in FIGS. 1-3, 5 and 11. Design
structure 1690 may then proceed to a stage 1695 where, for
example, design structure 1690: proceeds to tape-out, is
released to manufacturing, is released to a mask house, is sent
to another design house, is sent back to the customer, etc.

Ashas been described, a coherent attached processor proxy
(CAPP) includes transport logic having a first interface con-
figured to support communication with a system fabric of a
primary coherent system and a second interface configured to
support communication with an attached processor (AP) that
is external to the primary coherent system and that includes a
cache memory that holds copies of memory blocks belonging
to a coherent address space of the primary coherent system.
The CAPP further includes one or more master machines that
initiate memory access requests on the system fabric of the
primary coherent system on behalf of the AP, one or more
snoop machines that service requests snooped on the system
fabric, and a CAPP directory having a precise directory hav-
ing a plurality of entries each associated with a smaller data
granule and a coarse directory having a plurality of entries
each associated with a larger data granule.

While various embodiments have been particularly shown
as described with reference to a preferred embodiment, it will
be understood by those skilled in the art that various changes
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in form and detail may be made therein without departing
from the spirit and scope of the claims. For example, although
aspects have been described with respect to a computer sys-
tem executing program code that directs the functions of the
present invention, it should be understood that present inven-
tion may alternatively be implemented as a program product
including a computer-readable storage device (e.g., volatile
or non-volatile memory, optical or magnetic disk or other
statutory manufacture) that stores program code that can be
processed by a data processing system. Further, the term
“coupled” as used herein is defined to encompass embodi-
ments employing a direct electrical connection between
coupled elements or blocks, as well as embodiments employ-
ing an indirect electrical connection between coupled ele-
ments or blocks achieved using one or more intervening ele-
ments or blocks. In addition, the term “exemplary” is defined
herein as meaning one example of a feature, not necessarily
the best or preferred example.

What is claimed is:

1. A method of data processing, comprising:

at a coherent attached processor proxy (CAPP) of a pri-
mary coherent system that serves as a participant in
coherent communication within the primary coherent
system on behalf of an attached processor (AP) external
to the primary coherent system, maintaining, in a CAPP
directory, entries corresponding to cachelines of interest
to the AP that belong to a coherent address space of the
primary coherent system, wherein the maintaining
includes maintaining in a precise directory a plurality of
entries each associated with a respective one of a plural-
ity of smaller data granules and maintaining in a coarse
directory a plurality of entries each associated with a
respective one of a plurality of larger data granules;

the CAPP participating in coherent communication on a
system fabric of the primary coherent system on behalf
of the AP by reference to the coarse directory and the
precise directory; and

the CAPP installing an entry in the coarse directory in a
data-valid coherence state in advance of receipt of all of
the larger data granule by the AP.

2. The method of claim 1, wherein:

the smaller data granule comprises a single cacheline of
data; and

the larger data granule comprises a plurality of contiguous
cachelines.

3. The method of claim 1, and further comprising:

inresponse to at least one AP command, the CAPP decom-
poses an entry in the coarse directory into a plurality of
entries in the precise directory.

4. A method of data processing, comprising:

at a coherent attached processor proxy (CAPP) of a pri-
mary coherent system that serves as a participant in
coherent communication within the primary coherent
system on behalf of an attached processor (AP) external
to the primary coherent system, maintaining, in a CAPP
directory, entries corresponding to cachelines of interest
to the AP that belong to a coherent address space of the
primary coherent system, wherein the maintaining
includes maintaining in a precise directory a plurality of
entries each associated with a respective one of a plural-
ity of smaller data granules and maintaining in a coarse
directory a plurality of entries each associated with a
respective one of a plurality of larger data granules;

the CAPP participating in coherent communication on a
system fabric of the primary coherent system on behalf
of the AP by reference to the coarse directory and the
precise directory; and
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the CAPP determining a composite coherence state for a
target address by prioritizing a coherence state indicated
by the precise directory over a coherence state indicated
by the coarse directory.

5. A method of data processing, comprising: 5

at a coherent attached processor proxy (CAPP) of a pri-
mary coherent system that serves as a participant in
coherent communication within the primary coherent
system on behalf of an attached processor (AP) external
to the primary coherent system, maintaining, in a CAPP 10
directory, entries corresponding to cachelines of interest
to the AP that belong to a coherent address space of the
primary coherent system, wherein the maintaining
includes maintaining in a precise directory a plurality of
entries each associated with a respective one of a plural- 15
ity of smaller data granules and maintaining in a coarse
directory a plurality of entries each associated with a
respective one of a plurality of larger data granules;

the CAPP participating in coherent communication on a
system fabric of the primary coherent system on behalf 20
of the AP by reference to the coarse directory and the
precise directory; and

in response to a target address of a snooped memory access
request missing in the precise directory and hitting in the
coarse directory, the CAPP providing a Retry response 25
and installing an entry corresponding to the target
address in the precise directory.
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